Abstract

Exercise and exercise-induced weight loss have a beneficial effect on overall health, including positive effects on molecular pathways associated with immune function, especially in overweight individuals. The main aim of our study was to assess how energy deprivation (i.e., “semi-starvation”) leading to substantial fat mass loss affects the immune system and immunosuppression in previously normal weight individuals. Thus, to address this hypothesis, we applied a high-throughput systems biology approach to better characterize potential key pathways associated with immune system modulation during intensive weight loss and subsequent weight regain. We examined 42 healthy female physique athletes (age 27.5 ± 4.0 years, body mass index 23.4 ± 1.7 kg/m2) volunteered into either a diet group (n = 25) or a control group (n = 17). For the diet group, the energy intake was reduced and exercise levels were increased to induce loss of fat mass that was subsequently regained during a recovery period. The control group was instructed to maintain their typical lifestyle, exercise levels, and energy intake at a constant level. For quantification of systems biology markers, fasting blood samples were drawn at three time points: baseline (PRE), at the end of the weight loss period (MID 21.1 ± 3.1 weeks after PRE), and at the end of the weight regain period (POST 18.4 ± 2.9 weeks after MID). In contrast to the control group, the diet group showed significant (false discovery rate <0.05) alteration of all measured immune function parameters—white blood cells (WBCs), immunoglobulin G glycome, leukocyte transcriptome, and cytokine profile. Integrative omics suggested effects on multiple levels of immune system as dysregulated hematopoiesis, suppressed immune cell proliferation, attenuated systemic inflammation, and loss of immune cell function by reduced antibody and chemokine secretion was implied after intense weight loss. During the weight regain period, the majority of the measured immune system parameters returned back to the baseline. In summary, this study elucidated a number of molecular pathways presumably explaining immunosuppression in individuals going through prolonged periods of intense training with low-energy availability. Our findings also reinforce the perception that the way in which weight loss is achieved (i.e., dietary restriction, exercise, or both) has a distinct effect on how the immune system is modulated.

Highlights

  • Obesity and weight gain are associated with immune system dysfunction including impaired cell-mediated response, an increase in leukocyte counts, and induced low-grade systemic inflammation [1,2,3,4,5]

  • In a sample of young previously normal weight female physique athletes, we investigated immune function targeted multi-omics modulation at three time points: at baseline (PRE), at the end of the weight loss period (MID 21.1 ± 3.1 weeks after PRE), and at the end of the weight regain period (POST 18.4 ± 2.9 weeks after middle of the study (MID)) (n = 25), and compared them with non-dieting controls (n = 17)

  • An immune system function targeted systems biology approach included leukocyte derived RNA expression levels, immunoglobulin G (IgG) glycome, white blood cell (WBC) count distribution, and cytokine/chemokine profile investigated in a longitudinal study setting including three time-point measurements (PRE, MID, and part of the study (POST)) (Figure 1)

Read more

Summary

Introduction

Obesity and weight gain are associated with immune system dysfunction including impaired cell-mediated response, an increase in leukocyte counts, and induced low-grade systemic inflammation [1,2,3,4,5]. Prolonged periods of intense exercise and energy deficit leading to weight loss are common in many sports, especially in aesthetic sports such as fitness and physique sports [12]. These individuals, after years of training with ad libitum energy intake, go through intensive weight reduction periods (>10 weeks) preceding competitions to improve their muscular definition and aesthetic appearance by reducing body fat mass. Intensive weight reduction is typically accomplished by an exceptionally high volume of both resistance and endurance training and a low-energy intake [12] In these situations, alterations in immune function have been suggested, but not thoroughly studied [13, 14]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.