Abstract

Chromosome translocations disrupting the MLL gene are associated with various hematologic malignancies but are particularly common in infant and secondary therapy-related acute leukemias. The normal MLL-encoded protein is an essential component of a supercomplex with chromatin-modulating activity conferred by histone acetylase and methyltransferase activities, and the protein plays a key role in the developmental regulation of gene expression, including Hox gene expression. In leukemia, this function is subverted by breakage, recombination, and the formation of chimeric fusion with one of many alternative partners. Such MLL translocations result in the replacement of the C-terminal functional domains of MLL with those of a fusion partner, yielding a newly formed MLL chimeric protein with an altered function that endows hematopoietic progenitors with self-renewing and leukemogenic activity. This potent impact of the MLL chimera can be attributed to one of 2 kinds of activity of the fusion partner: direct transcriptional transactivation or dimerization/oligomerization. Key unresolved issues currently being addressed include the set of target genes for MLL fusions, the stem cell of origin for the leukemias, the role of additional secondary mutations, and the origins or etiology of the MLL gene fusions themselves. Further elaboration of the biology of MLL gene-associated leukemia should lead to novel and specific therapeutic strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.