Abstract

Acute erythroid leukemia (AEL) is a unique subtype of acute myeloid leukemia characterized by erythroid predominance and dysplasia. It is classified into two subtypes: pure erythroid (PEL) and erythroid/myeloid (EML) phenotypes. To understand the mechanism of the erythroid dominant phenotype of AEL and identify potential therapeutic targets for AEL, we analyzed 105 AEL and 214 non-AEL cases using whole-genome/exome and/or targeted-capture sequencing, with SNP probes for detecting copy number abnormalities. We also performed a transcriptome analysis of 12 AEL samples. Combining publicly available sequencing data, AEL was genetically clustered into four groups according to mutational status in TP53, STAG2, and NPM1 genes. Conspicuously, highly recurrent gains and amplifications affecting EPOR, JAK2, and/or ERG/ETS2 were recurrently detected in AEL cases, almost exclusively found in TP53-mutated cases. Among these, gains/amplifications of EPOR/JAK2 were more highly enriched in PEL than EML cases. Along with the activated STAT5 pathway, a common feature across all AEL cases, these AEL cases exhibited enhanced cell proliferation and heme metabolism, and they showed high sensitivity to ruxolitinib in in vitro and in xenograft models, highlighting the potential role of JAK2 inhibition in AEL therapeutics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call