Abstract

Microbial conversion of biomass into value-added biochemicals is a highly sustainable process compared to petroleum-based production. In this regard, microorganisms have been engineered via simple overexpression or deletion of metabolic genes to facilitate the production. However, the producer microorganisms require complex regulatory circuits to maximize productivity and performance. To address this issue, diverse genetic circuits have been developed that allow cells to minimize their metabolic burden, overcome metabolic imbalances and respond to a dynamically changing environment. In this review, we briefly explain the basic strategy for constructing genetic circuits by assembling molecular parts such as input, operation and output modules. Next, we describe recent applications of the circuits in the metabolic engineering of microorganisms to improve biochemical production. Beyond those achievements, genetic circuits will facilitate more innovative approaches to future strain development through mining and engineering new genetic elements and improving the complexity of genetic circuit design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call