Abstract
AbstractPeripheral halogen regulations can endow non‐fullerene acceptors (NFAs) with enhanced features as organic semi‐conductors and further boost efficient organic solar cells (OSCs). Herein, based on a remarkable molecular platform of CH14 with more than six halogenation positions, a preferred NFA of CH23 is constructed by synergetic halogen swapping on both central and end units, rendering the overall enlarged molecular dipole moment, packing density and thus relative dielectric constant. Consequently, the CH23‐based binary OSC reaches an excellent efficiency of 18.77% due to its improved charge transfer/transport dynamics, much better than that of 17.81% for the control OSC of CH14. This work demonstrates the great potential for further achieving state‐of‐the‐art OSCs by delicately regulating the halogen formula on these newly explored CH‐series NFAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.