Abstract
We have studied the structural and enzymatic properties of a diguanylate cyclase from an obligatory anaerobic bacterium Desulfotalea psychrophila, which consists of the N-terminal sensor domain and the C-terminal diguanylate cyclase domain. The sensor domain shows an amino acid sequence homology and spectroscopic properties similar to those of the sensor domains of the globin-coupled sensor proteins containing a protoheme. This heme-containing diguanylate cyclase catalyzes the formation of cyclic di-GMP from GTP only when the heme in the sensor domain binds molecular oxygen. When the heme is in the ferric, deoxy, CO-bound, or NO-bound forms, no enzymatic activity is observed. Resonance Raman spectroscopy reveals that Tyr55 forms a hydrogen bond with the heme-bound O2, but not with CO. Instead, Gln81 interacts with the heme-bound CO. These differences of a hydrogen bonding network will play a crucial role for the selective O2 sensing responsible for the regulation of the enzymatic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.