Abstract

Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with $N_{OB}\ge 10^5$ (corresponding to a star formation rate (SFR)$\ge 1$ M$_{\odot}$ yr$^{-1}$ in the nuclear region), in a stratified disk with mid-plane density $n_0\sim 200\hbox{--}1000$ cm$^{-3}$ and scale height $z_0\ge 200 (n_0/10^2 \, {\rm cm}^{-3})^{-3/5}$ pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is $\ge 10^7$ M$_\odot$ at a distance of a few hundred pc, with a speed of several tens of km s$^{-1}$. We show that a SFR surface density of $10 \le \Sigma_{SFR} \le 50$ M$_\odot$ yr$^{-1}$ kpc$^{-2}$ favours the production of molecular outflows, consistent with observed values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.