Abstract

Upon extraction/injection of a large quantity of gas from/into a subsurface system in shale gas production or carbon sequestration, the gas pressure varies remarkably, which may significantly change the wettability of porous media involved. Mechanistic understanding of such changes is critical for designing and optimizing a related subsurface engineering process. Using molecular dynamics simulations, we have calculated the contact angle of a water droplet on various solid surfaces (kerogen, pyrophyllite, calcite, gibbsite, and montmorillonite) as a function of CO2 or CH4 gas pressure up to 200 atm at a temperature of 300 K. The calculation reveals a complex behavior of surface wettability alteration by gas pressure variation depending on surface chemistry and structure, and molecular interactions of fluid molecules with surfaces. As the CO2 gas pressure increases, a partially hydrophilic kerogen surface becomes highly hydrophobic, while a calcite surface becomes more hydrophilic. Considering kerogen and calcite being the major components of a shale formation, we postulate that the wettability alteration of a solid surface induced by a gas pressure change may play an important role in fluid flows in shale gas production and geological carbon sequestration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.