Abstract

Small‐molecule organic semiconductors are used in a wide spectrum of applications, ranging from organic light emitting diodes to organic photovoltaics. However, the low carrier mobility severely limits their potential, e.g., for large area devices. A number of factors determine mobility, such as molecular packing, electronic structure, dipole moment, and polarizability. Presently, quantitative ab initio models to assess the influence of these molecule‐dependent properties are lacking. Here, a multiscale model is presented, which provides an accurate prediction of experimental data over ten orders of magnitude in mobility, and allows for the decomposition of the carrier mobility into molecule‐specific quantities. Molecule‐specific quantitative measures are provided how two single molecule properties, the dependence of the orbital energy on conformation, and the dipole‐induced polarization determine mobility for hole‐transport materials. The availability of first‐principles based models to compute key performance characteristics of organic semiconductors may enable in silico screening of numerous chemical compounds for the development of highly efficient optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.