Abstract
Understanding the origin of different morphologies in bulk-heterojunction solar cells can provide effective guidelines to rational control of the morphologies in the active layer. Here, we have uncovered the importance of molecular interactions on the morphologies for not only donor materials but also for fullerene acceptors in organic solar cells through the multiscale coarse-graining molecular dynamic simulations at the real device level (∼83 nm × 83 nm × 83 nm). It is found that oligothiophene donors with polar end groups could not only facilitate the formation of continuous donor network but also promote the aggregation and connection of fullerenes toward efficient hole and electron transport. On the contrary, fullerenes are well dispersed at the molecule levels in the less polar oligothiophene matrix and thus contribute to the poor electron transport mobility and device performance, which is consistent with the observed differences in both morphology and charge transport properties of these two systems. These results would provide effective guidelines for the rational molecule design and morphology control to further enhance the device performance of organic solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.