Abstract

A statistical mechanical theory is proposed which explains the molecular mechanism of the nonlinear response of the phase-transition temperature of phospholipid vesicle membranes to added 1-alkanols. By assuming that the free energy of transfer of 1-alkanols from the aqueous phase to the membrane and the interaction energy between 1-alkanol molecules are linear functions of alkanol alkyl chain-length, the nonlinear behavior is explained in the Bragg-Williams approximation. For dipalmitoylphosphatidylcholine vesicle membranes, the theory reveals a larger free energy of transfer of 1-alkanols from the aqueous phase to the solid-gel membrane than to the liquid-crystalline membrane when the number of carbon atoms of 1-alkanol exceeds 12. When the intermolecular interaction force between 1-alkanol molecules residing in the gel phase is stronger than the interaction force between those residing in the liquid-crystalline phase, the ligand effect is to tighten the lipid matrix structure, causing the transition temperature to rise. The interaction force is a quadratic function of 1-alkanol concentration; hence, the response of the transition temperature to the 1-alkanol concentration is nonlinear. At low concentrations of the long-chain 1-alkanols that predominantly elevate the transition temperature, this intermolecular interaction force is negligible. In this case, the entropic effect of the incorporated ligand molecules, which loosens the lipid matrix, predominates, and the transition temperature decreases. The biphasic action of long-chain 1-alkanols originates from the balance of these two opposing effects: entropy and intermolecular interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.