Abstract

The origin, the nature, and the electronic structure of surface defects causing surface states on metal oxides and their role in solar water splitting have been under scrutiny for several decades. In the present study, the surface of hematite films is treated with an oxygen plasma and then subject to a detailed investigation with electroanalytical methods and element orbital specific X-ray spectroscopy. We observe a systemic variation of photoelectrochemical properties with oxygen treatment time. Fe 2p and O 1s core level X-ray photoelectron spectra and resonant valence band photoemission at the Fe 3p edge reveal the filling of prevalent oxygen vacancies with concomitant oxidation of Fe2+ to Fe3+ upon the oxygen treatment. The dc bias dependent impedance spectra confirm how a prevalent capacitive surface state, which evolves parallel with the photocurrent onset potential, becomes diminished upon oxygen treatment. Surface states of iron induce higher reactivity toward water oxidation than oxygen surface st...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call