Abstract

We report measurements of molecular orientation in solid specimens of a main-chain thermotropic liquid crystalline polymer (LCP) that were quenched from mixed shear-extensional channel flows. The polymer under investigation is a random copolyether with mesogens separated by flexible hydrocarbon spacers. This polymer is known to exhibit ‘flow aligning’ dynamics under slow shear flow. Experiments were designed to preserve the molecular orientation state, representative of steady, isothermal channel flow in the solid samples, so that comparisons could be made against in situ channel flow measurements on other main chain thermotropes without flexible spacers, including a commercial fully aromatic copolyster. In the flow aligning material, little change in orientation was found in slit-contraction flows, and only modest drops in orientation were found in slit-expansion flow. This contrasts strongly with data on commercial LCPs, suggesting that these materials may be of the ‘tumbling’ type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.