Abstract

Multisubunit tethering complexes of the CATCHR (Complexes Associated with Tethering Containing Helical Rods) family are proposed to mediate the initial contact between an intracellular trafficking vesicle and its membrane target. To begin elucidating the molecular architecture of one well-studied example, the COG (conserved oligomeric Golgi) complex, we reconstituted its essential subunits (Cog1, Cog2, Cog3, and Cog4) and used single-particle electron microscopy to reveal a y-shaped structure with three flexible, highly extended legs. Labeling experiments established that the N-termini of all four subunits interact along the proximal segment of one leg, whereas three of the four C-termini are located at the tips of the legs. Our results suggest that the central region of the Cog1-4 complex, as well as the distal regions of at least two legs, all participate in interactions with other components of the intracellular trafficking machinery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.