Abstract

Solutions prepared by dissolving synthetic poly(p-phenyleneterephthalamide) (PPTA) in 99.8% H2SO4 were analyzed using natural abundance NMR methods as a function of the polymer concentration, molecular weight, and temperature. Concentration and molecular weight-driven transitions between isotropic, nematic, and solid-like phases could be clearly distinguished from the 13C NMR spectra of the solute and from 1H NMR spectra of the solvent. The 13C solute NMR spectra point toward a distribution in the order parameter of the liquid crystalline director and could be quantitatively reproduced using 13C shielding tensor elements measured by solid NMR in polycrystalline PPTA. Thermodynamic parameters for the nematic ⇄ isotropic equilibrium were obtained from the temperature dependence of the liquid crystalline 13C NMR spectra, and 2D NMR methods were employed to retrieve information about the kinetics of PPTA and H2SO4 migration between isotropic and nematic domains. The results obtained from these spectroscopic s...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.