Abstract
AbstractTransmitted polarized light microscopy of various natural silk secretions reveals their ability to form nematic liquid crystalline phases. Observations of microstructure, together with a simple secondary structure analysis of known amino acid sequences in silk proteins, suggest that the rodlike structures forming the nematic phase are supramolecular aggregates, rather than individual rigid molecular segments. The optical birefringence of dragline fiber produced by controlled silking depends on the linear haul-off velocity, and can exceed the birefringence of naturally spun fibers; this suggests the possibility of in-vitro spinning of silk to obtain values of strength and stiffness even greater than those achieved in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.