Abstract
Thiophene-based rodlike molecules constructed from a three phenyl ring core and terminal dialkoxy chains recognized as forked mesogens are synthesized, and their mesophase properties as well as the molecular order are investigated. The synthesized forked mesogens would serve as model compounds for tetracatenar or biforked mesogens. On the basis of the position of the thiophene link with the rest of the core, 2-substituted and 3-substituted mesogens are realized in which the length of the terminal alkoxy chains is varied. The mesophase properties are evaluated using a hot-stage polarizing microscope and differential scanning calorimetry. For both homologues, the appearance of either nematic phase alone or in conjunction with smectic C phase is noticed depending on the length of the terminal alkoxy chains. The existence of layer ordering characteristic of the smectic C phase is confirmed for a representative mesogen using variable-temperature powder X-ray diffraction. High-resolution solid-state (13)C NMR measurements of C12 homologues of the two series reveal orientational order parameters of all rings of the core as well as terminal chains in the liquid crystalline phase. For both homologues, because of the asymmetry of ring I, the order parameter value is higher in contrast to ring II, ring III, and the thiophene ring. The chemical shifts and (13)C-(1)H dipolar couplings of OCH2 carbons of the terminal dodecyloxy chains provide contrasting conformations, reflecting the orientational constraints. Furthermore, the investigations also reveal that the mesophase range and the tendency for layer ordering are higher for 3-substituted mesogens compared to 2-substituted homologues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.