Abstract

Quantum mechanical calculations were applied to resolve controversies about phosphate surface complexes on iron hydroxides. Six possible surface complexes were modeled: deprotonated, monoprotonated, and diprotonated versions of bridging bidentate and monodentate complexes. The calculated frequencies were compared to experimental IR frequency data (Persson et al. J. Colloid Interface Sci. 1996, 177, 263-275; Arai and Sparks J. Colloid Interface Sci. 2001, 241, 317-326.). This study suggests that the surface complexes change depending on pH. Four possible species are a diprotonated bidentate complex at pH 4-6, either a deprotonated bidentate or a monoprotonated monodentate complex at pH 7.5-7.9, and a deprotonated monodentate complex at pH 12.8. In addition, reaction energies were calculated for adsorption from aqueous solution to determine relative stability to form a monoprotonated monodentate complex and a deprotonated bidentate complex. According to these results, the monoprotonated monodentate complex should be favored. Vibrational frequencies of the monoprotonated monodentate and deprotonated bidentate complexes were analyzed with electronic effects on the Fe-OP and H-OP bonds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.