Abstract
The electronic structure of thyroxine and related compounds were calculated by semiempirical molecular orbital methods. When the quantum chemical indices obtained were compared with the structure-activity relationship obtained so far byin vivo andin vitro assays, it was found that HOMO (highest occupied molecular orbital) energy levels of thyroxine and its analogs are well correlated with the increase in oxygen consumption of rat kidney mitochondria determined byin vitro assay. This finding permits the hypothesis that these compounds may play a role in activating the electron transport system of mitochondria by mediating the oxidation-reduction of cytochromes. Furthermore, HOMO energy levels of thyroxine and phenol derivatives were found to correlate well with the stimulation of horseradish peroxidase-catalyzed oxidation of NADH. This suggests that the step of electron removal from these compounds by the enzyme system may be a rate-limiting step, confirming the view that phenoxy-radicals meditate the whole reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.