Abstract
Understanding the complex network and multi-functionality of proteins is one of the main objectives of post-genome research. Aminoacyl-tRNA synthetases (ARSs) are the family of enzymes that are essential for cellular protein synthesis and viability that catalyze the attachment of specific amino acids to their cognate tRNAs. However, a lot of evidence has shown that these enzymes are multi-functional proteins that are involved in diverse cellular processes, such as tRNA processing, RNA splicing and trafficking, rRNA synthesis, apoptosis, angiogenesis, and inflammation. In addition, mammalian ARSs form a macromolecular complex with three auxiliary factors or with the elongation factor complex. Although the functional meaning and physiological significance of these complexes are poorly understood, recent data on the molecular interactions among the components for the multi-ARS complex are beginning to provide insights into the structural organization and cellular functions. In this review, the molecular mechanism for the assembly and functional implications of the multi-ARS complex will be discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.