Abstract

Uncovering the function of structured water in the interfacial capacitance at the molecular level is the basis for the development of the concept and model of the electric double layer; however, the limitation of the available technology makes this task difficult. Herein, using surface-enhanced infrared absorption spectroscopy combined with electrochemistry, we revealed the contribution of the cleavage of loosely bonded tetrahedral water to the enhancement of model membrane capacitance. Upon further combination with ionic perturbation, we found that the interface hydrogen bonding environment in the stern layer was greatly significant for the light-induced cleavage of tetrahedral water and thus the conversion of optical signals into electrical signals. Our work has taken an important step toward gaining experimental insight into the relationship between water structure and capacitance at the bioelectric interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.