Abstract

Abstract Recent research has expanded the capabilities of four-wave mixing by providing it with component selectivity, site selectivity, and mode selectivity. The selectivity is achieved by taking advantage of the three resonance enhancements that occur in a four-wave mixing process. New spectral scanning strategies allow one to scan a single resonance while maintaining the other two resonances at constant values. The constant resonances can be used to select a specific component, a specific site within an inhomogeneously broadened envelope of a component, and/or a specific vibrational or vibronic mode of that site. The scanned resonance will then contain enhanced features corresponding to the particular component, site, and/or mode that was chosen by the constant resonances. These component and site selective capabilities of the four-wave mixing complement the single vibronic level fluorescence methods. The relative transition intensities from a specific component or site reflect the mode coupling betwee...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call