Abstract

Methods for studying the translocation of motor proteins along a filament (e.g., nucleic acid and polypeptide) typically monitor the total production of ADP, the arrival/departure of the motor protein at/from a particular location (often one end of the filament), or the dissociation of the motor protein from the filament. The associated kinetic time courses are often analyzed using a simple sequential uniform n-step mechanism to estimate the macroscopic kinetic parameters (e.g., translocation rate and processivity) and the microscopic kinetic parameters (e.g., kinetic step-size and the rate constant for the rate-limiting step). These sequential uniform n-step mechanisms assume repetition of uniform and irreversible rate-limiting steps of forward motion along the filament. In order to determine how the presence of non-uniform motion (e.g., backward motion, random pauses, or jumping) affects the estimates of parameters obtained from such analyses, we evaluated computer simulated translocation time courses containing non-uniform motion using a simple sequential uniform n-step model. By comparing the kinetic parameters estimated from the analysis of the data generated by these simulations with the input parameters of the simulations, we were able to determine which of the kinetic parameters were likely to be over/under estimated due to non-uniform motion of the motor protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.