Abstract

Many molecular machines with controllable molecular-scale motors have been developed. However, transmitting molecular movement to the macroscopic scale remains a formidable challenge. Here we report a single crystal of a Ni complex whose shape changes abruptly and reversibly in response to thermal changes at around room temperature. Variable-temperature single-crystal X-ray diffraction studies show that the crystalline shape change is induced by an unusual 90° rotation of uniaxially aligned oxalate molecules. The oxalate dianions behave as molecular-scale rotors, with their movement propagated through the entire crystalline material via intermolecular hydrogen bonding. Consequently, the subnanometre-scale changes in the oxalate molecules are instantly amplified to a micrometre-scale contraction or expansion of the crystal, accompanied by a thermal hysteresis loop. The shape change in the crystal was clearly detected under an optical microscope. The large directional deformation and prompt response suggest a role for this material in microscale or nanoscale thermal actuators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.