Abstract

A series of new N-1-(β-d-ribofuranosyl) benzimidazole derivatives has been designed using in silico methods and synthesized as probable antimicrobial agents. Further, the compounds were assessed for their antibacterial and antifungal activity. Antibacterial screening was done by employing broth micro-dilution method and compounds exhibited excellent inhibitory activity (MIC, 50–1.56 µg/mL) against different human pathogenic bacteria, viz. B. cerus, B. subtilis, S. aureus, E. coli and P. aeruginosa and drug resistant strain (DRS) of E. coli. A great synergistic effect was observed during evaluation of ∑FIC, where a combination study was performed using standard references, viz. chloramphenicol and kanamycin. The MIC data obtained from different methods of combination approach revealed 4–128 fold more potency compared to compounds tested alone. The results clearly indicated the possibility of these compounds as active ingredients of drug regimen used against MDR strains. Antifungal screening were also performed employing two different methods, viz. serial dilution method and zone inhibition method, clearly indicated that compounds were also potentially active against several species of pathogenic fungal strains, viz. A. flavus, A. niger, F. oxysporum and C. albicans. The assessment of structure activity relationship (SAR) clearly revealed that presence of less polar and more hydrophobic substituents positively favours the antibacterial activity, conversely, more polar and hydrophilic substituents favours the antifungal activities. Thus, the results positively endorsed the compounds as potent antibacterial and antifungal agents which could be developed as possible drug regimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call