Abstract

Previous studies found that the activity of Sortase A, a bacterial surface protein from Staphylococcus aureus, was inhibited by curcumin and its analogues. To explore this inhibitory mechanism, Sortase A and its inhibitors in complex systems were studied by molecular docking, molecular modelling, binding energy decomposition calculation and steered molecular dynamics simulations. Energy decomposition analysis indicated that PRO-163, LEU-169, GLN-172, ILE-182 and ILE-199 are key residues in Sortase A-inhibitor complexes. Furthermore, interactions between the methoxyl group on the benzene ring in the conjugated molecule (curcumin, demethoxycurcumin, bisdemethoxycurcumin) and VAL-168, LEU-169 and GLN-172 induce the inhibitory activity based on the energy decomposition and distance analyses between the whole residues and inhibitors. However, because of its coiled structure, the non-conjugated molecule, tetrahydrocurcumin, with key residues in the binding sites of Sortase A, interacted weakly with SrtA, leading to the loss of inhibitory activity. Based on these results, the methoxyl group on the benzene ring in the conjugated molecule largely influenced the inhibitory activity of the Sortase A inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.