Abstract

1. The construction of three-dimensional models of CYP2B isozymes from rat (CYP2B1), rabbit (CYP2B4) and man (CYP2B6), based on a multiple sequence alignment with CYP102,a unique eukaryotic-like bacterial P450 (in terms of possessing an NADPHdependent FAD- and FMN-containing oxidoreductase redox partner) of known crystal structure, is reported. 2. The enzyme models described are shown to be consistent with experimental evidence from site-directed mutagenesis studies, antibody recognitionsites and amino acid residues identified as being associated with redox partner interactions, together with the location of a key serine residue (Ser-128) likely to be involved in protein kinaseA-mediated phosphorylation. 3. A substantial number of known substrates and inhibitors of CYP2B isozymes are shown to fit the putative active sites of the enzyme models inagreement with their reported position of metabolism or mode of inhibition respectively. In particular, there is complementarity between the characteristic non-planar geometries of CYP2B substrates and key groups in the enzymes' active sites. 4. Molecular modelling of CYP2B isozymes appears to rationalize a number of the reported findings from quantitative structure-activity relationship investigations on series of CYP2B substrates and inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.