Abstract

HPLC experiments to separate butyl-terminated polystyrene (B-PS) oligomers have been mimicked by equilibrium self-consistent-field calculations based upon the Scheutjens Fleer formalism for polymers at interfaces. The adsorption–desorption transition as a function of the fraction of good solvent in a non-solvent (water)–solvent (tetrahydrofuran) mixture has been analysed and correlated to corresponding experiments. Much attention is paid to keeping the modelling as realistic as possible; for example, the effects of the solvent mixture on the C 18-alkyl tails that are grafted on the silica surface are retained in the calculations. It is shown that the butyl end groups affect the elution properties up to chains with approximately 30 styrene units. Excellent semi-quantitative comparison is found with experiments for a realistic set of interaction parameters. Molecular-level information is available for the adsorption layer as a function of the solvent quality. Going from poor to good solvent, it is typical to find that the B-PS is fully absorbed inside the alkyl brush, then adsorbed on top of it, and finally depleted from it. The depletion effect in good solvents increases with increasing molecular mass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.