Abstract

The Food and Drug Administration (FDA) has approved MAPK inhibitors as a treatment for melanoma patients carrying a mutation in codon V600 of the BRAF gene exclusively. However, BRAF mutations outside the V600 codon may occur in a small percentage of melanomas. Although these rare variants may cause B-RAF activation, their predictive response to B-RAF inhibitor treatments is still poorly understood. We exploited an integrated approach for mutation detection, tumor evolution tracking, and assessment of response to treatment in a metastatic melanoma patient carrying the rare p.T599dup B-RAF mutation. He was addressed to Dabrafenib/Trametinib targeted therapy, showing an initial dramatic response. In parallel, in-silico ligand-based homology modeling was set up and performed on this and an additional B-RAF rare variant (p.A598_T599insV) to unveil and justify the success of the B-RAF inhibitory activity of Dabrafenib, showing that it could adeptly bind both these variants in a similar manner to how it binds and inhibits the V600E mutant. These findings open up the possibility of broadening the spectrum of BRAF inhibitor-sensitive mutations beyond mutations at codon V600, suggesting that B-RAF V600 WT melanomas should undergo more specific investigations before ruling out the possibility of targeted therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.