Abstract
The major obstacle in controlling malaria is the mosquito’s resistance to insecticides, including pyrethroids. The resistance is mainly due to the over-expression of detoxification enzymes such as cytochromes. Insecticides tolerance can be reduced by inhibitors of P450s involved in insecticide detoxification. Here, to design potential CYP6P3 inhibitors, a homology model of the enzyme was constructed using the crystal structure of retinoic acid-bound cyanobacterial CYP120A1 (PDB ID: 2VE3; Resolution: 2.1 Å). Molecular docking study and computational modeling were employed to determine the inhibitory potentials of some phytoligands isolated from Ficus sycomorus against Anopheles coluzzii modeled P450 isoforms, CYP6P3, implicated in resistance. Potential ligand optimization (LE) properties were analyzed using standard mathematical models. Compounds 5, 8,and 9 bound to the Heme iron of CYP6P3 within 3.14, 2.47 and 2.59 Å, respectively. Their respective binding energies were estimated to be -8.93, -10.44, and -12.56 Kcal/mol. To examine the stability of their binding mode, the resulting docking complexes of these compounds with CYP6P3 were subjected to 50 ns MD simulation. The compounds remained bound to the enzyme and Fe (Heme):O (Ligand) distance appeared to be maintained over time. The coordination of a strong ligand to the heme iron shifts the iron from the high- to the stable low-spin form and prevented oxygen from binding to the heme thereby inhibiting the catalytic activity. The LE index showed the high potential of these compounds (5 and 8) to provide a core fragment for optimization into potent P450 inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.