Abstract

IntroductionCoagulation factor XIII (FXIII) is a fibrin-stabilizing factor, which contributes to hemostasis, wound healing, and maintenance of pregnancy. Accordingly, patients with congenital FXIII deficiency manifest a life-long bleeding tendency, abnormal wound healing and recurrent miscarriage. In order to understand the molecular mechanisms of congenital FXIII deficiency, genetic analysis and molecular modeling were carried out in a Japanese male neonate with severe FXIII deficiency. Methods and ResultsTwo novel mutations, Y204Stop (or Y204X, TAT to TAA) and S708R (AGC to AGG), were heterozygously identified by nucleotide sequencing analysis in exons V and XV of the gene for the A subunit of FXIII (FXIII-A). Y204X and S708R would lead to nonsense mediated mRNA decay and misfolding of the FXIII-A molecule, respectively. Using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, the presence of these mutations was confirmed both together in the proband and one each separately in either the maternal or paternal sides of his family. In addition, moderately decreased FXIII activity was associated with the presence of either mutation. Molecular modeling predicted that the mutant molecule of S708R would be structurally compromised by the substitution of the Ser with the larger extended bulky and positively charged Arg side-chain. ConclusionIt is probable that the impaired tertiary structure of the mutant S708R molecule leads to its instability, which is at least in part responsible for the FXIII deficiency of this patient. This is consistent with the fact that the mutations and the reduced FXIII activities co-segregate among the patient's family members.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call