Abstract
Understanding to the pressure-driven desorption of methane in shale formations is crucial for the establishment of predictive models used in shale gas development. Based on the grand canonical Monte-Carlo simulations of methane adsorption in illite slits of 1-5-nm wide, the pressure-driven desorption processes of methane in the nanoslits are studied with non-equilibrium molecular dynamics simulations. External forces are applied to the methane molecules to mimic a pressure drop that releases the adsorbed molecules and pushes them flowing directionally. Effect of pressure drop and slit aperture on the interchange between adsorbed and free phases of methane is investigated by a statistic analysis on the velocity and density distributions of methane molecules in the nanoslits under various conditions. A minimum pressure drop that initiates the methane desorption in the illite slit exists and varies with slit aperture. Our simulations reveal the microscopic mechanism of pressure-driven methane desorption, which would be useful for subsequent studies on the prediction of mineable yields for shale formations. Under pressure drop, adsorbed methane moleculesare desorbed to free phase and then transported to wellbore. The criterion of pressure drop for desorption increases with decreasing slit aperture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.