Abstract
Although 9-anilinoacridines are among the best studied antitumoral intercalators, there are few studies about the effect of isosteric substitution of a benzene moiety for a heterocycle ring in the acridine framework. According to these studies, this approach may lead to effective cytotoxic agents, but good cytotoxic activity depends on structural requirements in the aniline ring which differ from those in 9-anilinoacridines. The present paper deals with molecular modeling studies of some 9-anilino substituted tricyclic compounds and their intercalation complexes (in various DNA sequences) resulting from docking the compounds into various DNA sequences. As expected, the isosteric substitution in 9-anilinoacridines influences the LUMO energy values and orbital distribution, the dipole moment, electrostatic charges and the conformation of the anilino ring. Other important differences are observed during the docking studies, for example, changes in the spatial arrangement of the tricyclic nucleus and the anilino ring at the intercalation site. Semiempirical calculations of the intercalation complexes show that the isosteric replacement of a benzene ring in the acridine nucleus affects not only DNA affinity but also base pair selectivity. These findings explain, at least partially, the different structural requirements observed in several 9-anilino substituted tricyclic compounds for cytotoxic activity. Thus, the data presented here may guide the rational design of new agents with different DNA binding properties and/or a cytotoxic profile by isosteric substitution of known intercalators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.