Abstract

A three-dimensional model of the neuropeptide Y (NPY) - rat Y1 (rY1) receptor complex and of the NPY 13-36 - rY1 receptor complex was constructed by molecular modeling based on the electron density projection map of rhodopsin and on site-directed mutagenesis studies of neuropeptide receptors. In order to further guide the modeling, the nucleotide sequences encoding Trp287, Cys295 and His297 in the third extracellular loop of the rY1 receptor, were altered by site-directed mutagenesis experiments. Single-point mutated receptors were expressed in COS-7 cells, and tested for their ability to bind radio labelled NPY (3H-NPY). Mutations of Trp287 and His297 completely abolished binding of 3H-NPY. The Cys295Ser mutation only slightly decreased the binding of 3H-NPY, suggesting that the involvement of Cys295 in a disulphide bond is not essential for maintaining the correct three-dimensional structure of the binding site for NPY. Molecular dynamics simulations of NPY-rY1 receptor interactions suggested that Asp199, Asp103 and Asp286 in the receptor interact, respectively, with Lys4, Arg33 and Arg35 of NPY. The simulations also suggested that His297 acts as a hydrogen acceptor from Arg35 in NPY, and that Tyr1 of NPY interacts with a binding pocket on the receptor formed by Asn115, Asp286, Trp287 and His297. Tyr36 in NPY interacted both with Thr41 and Tyr99 via hydrogen bonds, and also with Asn296, His297 and Phe301. The present study suggests that amino acid residues at the extracellular end of the transmembrane helices and in the extracellular loops are strongly involved in binding to NPY and NPY13-36.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call