Abstract

Janus kinase 2(JAK2) is a potential target for anticancer drugs in the treatment of numerous myeloproliferative diseases due to its central role in the JAK/STAT signaling cascade. In this study, the binding behavior of 2 amino-pyridine derivatives as JAK2 inhibitors was investigated by using multifaceted strategies including 3D-QSAR, molecular docking, Fingerprint analysis, MD simulations, and MM-PBSA calculations. A credible COMFA (q 2 = 0.606 and r 2 = 0.919) and COMSIA (q 2 = 0.641 and r 2 = 0.992) model was developed, where the internal and external validation revealed that the obtained 3D-QSAR models could be capable of predicting bioactivities of JAK2 inhibitors. The structural criteria provided by the contour maps of model were used to computationally develop more potent 100 new JAK2 inhibitors. Docking studies were conducted on the model data set and newly developed compounds (in-house library) to demonstrate their binding mechanism and highlight the key interacting residues within JAK2 active site. The selected docked complexes underwent MD simulation (100 ns), which contributed in the further study of the binding interactions. Binding free energy analyses (MMGB/PBSA) revealed that key residues such as Glu930, Leu932 (hinge region), Asp939 (solvent accessible region), Arg980, Asn981and Asp994 (catalytic site) have a significantly facilitate ligand-protein interactions through H-bonding and van der Waals interactions. The preliminary in-silico ADMET evaluation revealed encouraging results for all the modeled and in-house library compounds. The findings of this research have the potential to offer valuable recommendations for the advancement of novel, potent, and efficacious JAK2 inhibitors. Overall, this work has successfully employed a wide range of computer-based methodologies to understand the interaction dynamics between 2-amino-pyridine derivatives and the JAK2 enzyme, which is a crucial target in myeloproliferative disorders. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call