7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.bmc.2006.04.047
Copy DOIJournal: Bioorganic & Medicinal Chemistry | Publication Date: May 23, 2006 |
Citations: 29 |
Inhibitors for matrix metalloproteinases (MMPs) are under investigation for the treatment of various important chronic illnesses, including cancer, arthritis, and cardiovascular disease (CVD). In particular, MMP-13 is currently being probed as a potential key target in CVD and malignant disease due to its documented effects on extracellular matrix (ECM) remodeling, important in the pathophysiology of these diseases. Within the family of related mammalian MMP enzymes, MMP-13 possesses a large hydrophobic binding pocket relative to that of other MMPs. Homochiral astaxanthin (3 S,3′ S-AST; 3 S,3′ S-dihydroxy-β,β-carotene-4,4′-dione), an important antioxidant and anti-inflammatory xanthophyll carotenoid, is an active metabolite of several novel soft drugs in clinical development; it is also extensively used and tested as a human nutraceutical. In the current study, the prediction of the geometry and energetics of its binding to human MMP-13 was conducted with molecular modeling. The method used was found to predict the energy of binding of known ligands of MMP-13 with great precision. Blind docking using the whole protein target was then used in order to identify the possible binding site(s) of AST. AST was predicted to bind at several sites in close proximity to the active center. Subsequent analyses focused on the binding site at the atomic (i.e., amino acid sequence) level suggested that AST can bind to MMP-13 with high affinity and favorable energetics. Therefore, the modeling study predicts potential direct enzyme-inhibitory activity of AST against MMP-13, a behavior that may be exploited in mammalian systems in which pathological upregulation of MMP activity is paramount.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.