Abstract

Classical molecular dynamics was employed to study the impact of nanoconfinement and surface nanostructure on electrostatic phenomena and transport properties in catalyst layer pores of polymer electrolyte fuel cells. The porous structure of an ionomer-free ultrathin catalyst layer was represented by a water-filled nanochannel with corrugated and negatively charged Pt walls. The equilibrium hydronium ion distribution in the channel was used to assess local reaction conditions. We rationalized the effects of nanostructuring and metal surface charge on the electrostatic effectiveness factor of the channel. Furthermore, we investigated the water dynamics in the nanochannel, calculating the self-diffusion coefficients of surface and bulk-like water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call