Abstract

The formation of the reactive enzyme–substrate complex of formate dehydrogenase has been investigated by molecular dynamics techniques accounting for different conformational states of the enzyme. Simulations revealed that the transport of substrate to the active site through the substrate channel proceeds in the open conformation of enzyme due to the crucial role of the Arg284 residue acting as a vehicle. However, formate binding in the active site of the open conformation leads to the formation of a nonproductive enzyme–substrate complex. The productive Michaelis complex is formed only in the closed enzyme conformation after the substrate and coenzyme have bound, when required rigidity of the binding site and reactive formate orientation due to interactions with Arg284, Asn146, Ile122, and His332 residues is attained. Then, the high occupancy (up to 75%) of the reactive substrate–coenzyme conformation is reached, which was demonstrated by hybrid quantum mechanics/molecular mechanics simulations using various semiempirical Hamiltonians.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.