Abstract

To date, molecular modeling of cross-linking polymers has focused on those involving single-reaction cure mechanisms, such as epoxies and the epoxide–amine reaction. In this work, we have developed a novel cross-linking framework that is capable of undertaking complex cure mechanisms involving several simultaneous reaction pathways with minimal user input. As a case study, a bismaleimide (BMI) resin is considered herein which possesses multiple cure reactions and reaction pathways. Using an adaptable molecular dynamics simulation method, we highlight our framework by implementing five distinct cure reactions of Matrimid-5292 (a BMI resin) and predicting the corresponding thermomechanical properties. The method is used to establish the influence of different cure reactions and extent of curing on mass density, glass transition temperature, coefficient of thermal expansion, elastic moduli, and thermal conductivity. The developed method is further validated by comparison of these properties to experimentally...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.