Abstract

The experimental autoimmune encephalomyelitis mouse model is the most commonly used animal model, and it best represents multiple sclerosis. Grancalcin (GCA) was discovered to be upregulated in EAE mice. GCA comprises 220 amino acids that have been assigned the UniprotKB ID Q8VC88. It is a calcium-binding protein that helps neutrophils adhere to fibronectin and the formation of focal adhesions. However, the protein data bank does not contain the crystal structure of mouse GCA. The current study aims to analyze the structural and physicochemical properties of GCA. Mouse GCA showed a high percentage identity (87%) with the crystal structure of des (1–52) grancalcin with bound calcium (chain A) from Homo sapiens identified by its PDB id 1k94_A. Using the SWISS-MODEL server, we used 1k94_A as a template protein to model the mouse GCA protein. Compared to the template structure 1K94, three potential binding sites for calcium-binding have been proposed, ranging from 13 to 20, 80 to 91, and 109 to 120 amino acids. On an i5 personal computer with 8GB of RAM, GROMACS 2020.1 was utilized to run a 100 ns molecular dynamics (MD) simulation. RMSD, Rg, and RMSF analysis of an MD simulation trajectory indicate a stable and compact state throughout the simulation period of modeled proteins. We found that GCA is primarily alpha helical (Class 1), with eight alpha helices. The essential dynamics analysis captures PCA and SASA, culminating in the biological motions that correspond to the last 1000 frames. These findings will aid the development of potential inhibitors as well as the determination of binding pockets and residues for drug-like molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.