Abstract
Plant cystatins show great potential as tools to genetically engineer resistance of crop plants against pests. Two important potential targets are the bean weevils Acanthoscelides obtectus and Zabrotes subfasciatus, which display major activities of digestive cysteine proteinases in midguts. In this study a cowpea cystatin, a cysteine proteinase inhibitor found in cowpea (Vigna unguiculata) seeds, was expressed in Escherichia coli and purified with a Ni-NTA agarose column. It strongly inhibited papain and proteinases from midguts of both A. obtectus and Z. subfasciatus bruchids, as seen by in vitro assays. When the protein was incorporated into artificial seeds at concentrations as low as 0.025%, and seeds were consumed by the bruchids larva, dramatic reductions in larval weight, and increases in insect mortality were observed. Molecular modeling studies of cowpea cystatin in complex with papain revealed that five N-terminal residues responsible for a large proportion of the hydrophobic interactions involved in the stabilization of the enzyme-inhibitor complex are absent in the partial N-terminal amino acid sequencing of soybean cystatin. We suggest that this structural difference could be the reason for the much higher effectiveness of cowpea cystatin when compared to that previously tested phytocystatin. The application of this knowledge in plant protein mutation programs aiming at enhancement of plant defenses to pests is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.