Abstract

Experimental and simulation analyses were performed on the lipase-catalyzed esterification reaction of racemic naproxen by CALB (candida antarctica lipase B) enzyme in supercritical carbon dioxide. The reaction pathways were investigated by quantum mechanical analysis, and the enantioselectivity of the products was predicted by molecular dynamics simulation analysis. Calculated results from molecular modeling in supercritical carbon dioxide were qualitatively compared with experimental data by using racemic naproxen as a substrate. All molecular modeling results and experimental data were acquired and compared with those in ambient and supercritical condition. Moreover, to verify the stability of enzymatic reaction in each solvent condition, reaction pathways were investigated in several solvent conditions (vacuum, water, hexane and supercritical carbon dioxide), and the stability of enzymatic reaction in supercritical carbon dioxide was compared with other solvent conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call