Abstract

Protein folding poses unique challenges for large, disordered proteins due to the low resolution of structural data accessible in experiment and on the basis of short time scales and limited sampling attainable in computation. Such molecules are uniquely suited to accelerated-sampling molecular dynamics algorithms due to a flat-energy landscape. We apply these methods to report here the folded structure in water from a fully extended chain of tropoelastin, a 698-amino acid molecular precursor to elastic fibers that confer elasticity and recoil to tissues, finding good agreement with experimental data. We then study a series of artificial and disease-related mutations, yielding molecular mechanisms to explain structural differences and variation in hierarchical assembly observed in experiment. The present model builds a framework for studying assembly and disease and yields critical insight into molecular mechanisms behind these processes. These results suggest that proteins with disordered regions are suitable candidates for characterization by this approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.