Abstract

We present a molecular model for studying the prototypical ferric–ferrous electron transfer process in liquid water, and we discuss its structural implications. Treatment of the nonequilibrium dynamics will be the subject of future work. The elementary constituents in the model are classical water molecules, classical ferric ions (i.e., Fe3+ particles), and a quantal electron. Pair potentials and pseudopotentials describing the interactions between these constituents are presented. These interactions lead to ligand structures of the ferric and ferrous ions that are in good agreement with those observed in nature. The validity of the tight binding model is examined. With umbrella sampling, we have computed the diabatic free energy of activation for electron transfer. The number obtained, roughly 20 kcal/mol, is in reasonable accord with the aqueous ferric–ferrous transfer activation energy of about 15 to 20 kcal/mol estimated from experiment. The Marcus relation for intersecting parabolic diabatic free energy surfaces is found to be quantitatively accurate in our model. Due to its significance to future dynamical studies, we have computed the tunnel splitting for our model in the absence of water molecules. Its value is about 1 kB T at room temperature for ferrous–ferric separations around 5.5 Å. This indicates that the dynamics of the electron transfer are complex involving both classical adiabatic dynamics and quantal nonadiabatic transitions. The dynamics may also be complicated due to glassy behavior of tightly bound ligand water molecules. We discuss this glassy behavior and also describe contributions to the solvation energetics from water molecules in different solvation shells. Finally, the energetics associated with truncating long ranged forces is discussed and analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.