Abstract
Molecular misreading is a novel process that causes mutations in neuronal transcripts. It is defined as the inaccurate conversion of genomic information from DNA into nonsense transcripts and the subsequent translation into mutant proteins. As a result of dinucleotide deletions (delta GA, delta GU, delta CU) in and around GAGAG motifs in mRNA the reading frame shifts to the +1 frame, and subsequently the so-called +1 proteins are synthetized. +1 Proteins have a wild-type NH2 terminus and from the site of the dinucleotide deletion onwards an aberrant, nonfunctional COOH terminus. Molecular misreading was found in the rat vasopressin gene associated with diabetes insipidus and in the human genes linked to Alzheimer's disease (AD), that is, beta-amyloid precursor protein (beta APP) and ubiquitin-B (UBB). Moreover, beta APP+1 and UBB+1 proteins accumulate in the neuropathological hallmarks of AD. Inasmuch as these +1 proteins were also found in elderly, nondemented control patients, but not in younger ones (< 72 years), molecular misreading may act as a factor that becomes manifest in aged people. A hotspot for dinucleotide deletions is GAGAG motifs. Because statistically an average of 2.1 GAGAG motifs per gene can be expected, other genes expressed in other tissues may undergo molecular misreading as well. Indeed, we recently detected +1 proteins in proliferating cells present in tissues such as the liver, epididymis, parotid gland, and neuroblastoma cell lines. Therefore, molecular misreading can be regarded as a general biological source of transcript errors that may be involved in cellular derangements in numerous age-related pathologic conditions apart from Alzheimer's disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.