Abstract

Type 1 diabetes is caused by a T cell-mediated autoimmune destruction of the pancreatic beta cells. Molecular mimicry between viral pathogens and beta cell protein has been a popular theory to explain loss of tolerance in type 1 diabetes. However, functional data in support of this hypothesis have been lacking, presumably because the homologies were defined on the basis of linear similarities in peptide sequences, which ignores the criteria of HLA versus T cell receptor contact residues in peptide epitopes required for T cell recognition. We applied a HLA-binding dedicated peptide microarray analysis using autoreactive T cell clones specific for the autoantigen GAD65 to determine the algorithm of T cell recognition by this given T cell clone. The subsequent database search identified a 100% fit with cytomegalovirus peptide, which was subsequently shown to be recognized by these clonal T cells. However, T cell clones reactive with linear homologies previously described as putative candidates for T cell cross-reactivity between GAD65 and Coxsackie virus peptide were unable to recognize the homologous counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.