Abstract

Two molecular-based methods for estimating capsid integrity as a proxy for virus infectivity were used to produce thermal inactivation profiles of Snow Mountain virus (SMV), a prototype human norovirus (HuNoV). Monodispersed virus suspensions were exposed to 77, 80, 82 and 85 °C for various times, pre-treated with either propidium monoazide (PMA) or RNase, and subjected to RNA isolation followed by RT-qPCR amplification. D-values were 25.6 ± 2.8, 3.1 ± 0.1, 0.7 ± 0.04 and 0.2 ± 0.07 min at 77, 80, 82 and 85 °C, respectively for PMA-treated SMV; and 16.4 ± 0.4, 3.9 ± 0.2 0.9 ± 0.3 and 0.12 ± 0.00 min at 77, 80, 82 and 85 °C, respectively for RNase-treated SMV. Corresponding zD values were 3.80 °C and 3.71 °C for PMA and RNase-treated virus, respectively. Electron microscopy data applied to heat-treated virus-like particles supported this relatively high degree of thermal resistance. The data suggest that SMV is more heat resistant than common cultivable HuNoV surrogates. Standardized thermal inactivation methods (such as milk pasteurization) may not be stringent enough to eliminate this virus and perhaps other HuNoV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call