Abstract

Traumatic experiences are closely associated with some psychiatric conditions such as post-traumatic stress disorder. Deconditioning-update promotes robust and long-lasting attenuation of aversive memories. The deconditioning protocol consists of applying weak/neutral footshocks during reactivations, so that the original tone-shock association is replaced by an innocuous stimulus that does not produce significant fear response. Here, we present the molecular bases that can support this mechanism. To this end, we used pharmacological tools to inhibit the activity of ionotropic glutamate receptors (NMDA-GluN2B and CP-AMPA), the activity of proteases (calpains), and the receptors that control intracellular calcium storage (IP3 receptors), as well as the endocannabinoid system (CB1). Our results indicate that blocking these molecular targets prevents fear memory update by deconditioning. Therefore, this study uncovered the molecular substrate of deconditioning-update strategy, and, broadly, shed new light on the traumatic memory destabilization mechanisms that might be used to break the boundaries regarding reconsolidation-based approaches to deal with maladaptive memories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.