Abstract
The regulation of proenkephalin (proENK) mRNA levels by cAMP and protein kinase C (PKC) pathways was studied in cultured rat spinal cord cells in the present study. Spinal cord cells were cultured from 14 day (E 14) embryos of Sprague-Dawley rats. After 7 days in vitro, the spinal cord cells were incubated with either forskolin (5 microM) or phorbol-13-myristate acetate (PMA; 2.5 microM) for 1, 3, 6, 9, 12 or 24 h and total RNA and proteins were isolated for Northern and Western blot analyses. The proENK mRNA level began to increase within an hour, then reached and remained at a peak 3-12 h after stimulation by both forskolin and PMA. The increased proENK mRNA level in forskolin-treated cells was slightly decreased 24 h after the stimulation, whereas the level of proENK mRNA returned to basal levels in PMA-treated cells. A Western blot assay revealed that the intracellular level of proENK protein was not changed by treatment with either forskolin or PMA. Pretreatment of cells with cycloheximide (a protein synthesis inhibitor; 10 microM) did not affect the forskolin- or PMA-induced increase of proENK mRNA. However, pretreatment with nimodipine (an L-type Ca2+ channel blocker; 2 microM), omega-conotoxin (an N-type Ca2+ channel blocker; 1 microM), calmidazolium (a calmodulin antagonist; 1 microM) or KN-62 (a Ca2+/calmodulin-dependent protein kinase II inhibitor; 5 microM) attenuated the forskolin- or PMA-induced increase of proENK mRNA levels. Dexamethasone (1 microM) did not affect the forskolin-induced increase of proENK mRNA levels. Our results suggest that the elevation of proENK mRNA levels in the spinal cord is regulated by both cAMP and PKC pathways. Calcium influx through both L- and N-type calcium channels, calmodulin and Ca2+/calmodulin-dependent protein kinase II appear to be involved in the increase of proENK mRNA levels induced by either forskolin or PMA. Furthermore, ongoing protein synthesis is not required for forskolin- or PMA-induced alterations in proENK mRNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.