Abstract

Despite considerable effort, a molecular-level understanding of the mechanisms governing adsorption/desorption in reversed-phase liquid chromatography is still lacking. This impedes rational design of columns and the development of reliable, computationally more efficient approaches to predict the selectivity of a particular column design. Using state-of-the art, validated force fields and free-energy simulations, the adsorption thermodynamics of benzene derivatives is investigated in atomistic detail and provides a quantitative microscopic understanding of retention when compared with experimental data. It is found that pure partitioning or pure adsorption is rather the exception than the rule. Typically, a pronounced ∼1 kcal/mol stabilization on the surface is accompanied by a broad trough indicative of partitioning before the probe molecule incorporates into the mobile phase. The present findings provide a quantitative and rational basis to develop improved effective, coarse-grained computational models and to design columns for specific applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.